Fast electron generation and transport for fast ignition at 527nm

R. Fedosejevs

Department of Electrical and Computer Engineering University of Alberta

10th Direct Drive and Fast Ignition Workshop Prague, May 28-30, 2012

Experiments at the Titan laser facility LLNL

H Friesen, S Kerr, A Beaudry, J Tait, J Westwood, HF Tiedje, S Singh, MZ Mo, ZJ Chen, YY Tsui University of Alberta

DP Higginson, A Sorokovikova, CC Jarrott, B Westover, FN Beg University of California San Diego

A Link, GE Kemp, KU Akli, RR Freeman, LD Van Woerkom Ohio State University

D Hey, Y Ping, C Chen, MH Key, HS McLean, P Patel, T Doeppner Lawrence Livermore National Laboratory

> RB Stephens General Atomics

I Bush, J Pasley

University of York

Electron Energy Scaling

Required electron energies ~ 1-3 MeV

Scaling Laws:

Wilks (Ponderomotive) PRL 69, 1383 (1992)

Beg (Exp Bremsstrahlung) Phys.Plasmas 4,447 (1997)

Haines (Energy/Momentum) PRL 102, 045008 (2009)

Titan Laser Facility

Titan will enable experiments combining short-pulse petawatt-class, and long-pulse kJ beams

Titan 2₍₀₎ **Experiment Objectives**

Determine scaling at 2ω for hot electron generation

Measure

- T_{hot}
- Electron generation efficiency
- Divergence
- Specular Beam reflection and chirp

Geometries

- Flat Foils with Cu tracer layer
- Buried Cones with Cu tracer layer
- Cone wire

Diagnostics

- HOPG CU K_{α} x-ray spectrometers
- Electron spectrometers
- X-ray Bremsstrahlung versus angle
- Cu K_{α} imaging crystals
- KB x-ray microscope
- Specular Reflection and FROG

2 \omega Titan Run Parameters

50 J 700 fs 0.527 μm 5 x 10¹⁹ W cm⁻² Prepulse < 10μJ or 3mJ injected

> Planar Foil Targets Buried Cone targets Cone foil Targets Cone Wire Targets

Conversion Efficiency

Peak Conversion efficiencies of over 60% obtained - 2mm KDP crystal

Laser Diagnostic Layout - 2ω

Input FROG Signals

710 fs pulse duration with slight chirp

Typical Low Energy Focal Spot on Target

Low Intensity Focal Spot at TCC

Estimated Radially Symmetric Target Intensity Distribution for 50J 700 fs

Equivalent FWHM Spot Diameter = 8 µm

Targets used

Shots taken with no prepulse (<10 μ J) or with injected 3mJ 3ns 2 ω prepulse

2D MULTI Calculations of 3mJ Prepulse Plasma - Rafael Ramis

Experimental Diagnostic Layout

Spectralon Reflectivity Mesurement Setup

DEPARTMENT OF STATE PHYSICS

Imaging System •On Door H •Looking through Port H1 Spectralon • 10" x 10" spectralon • In front of Door E • Holes aligned to allow FROG through port E2 • F/1.5 beam collection

Specular Reflectivity Images Titan 2w run

No prepulse

3mJ prepulse

- Speckle pattern seen from no prepulse shots speckle from surface roughness
- Smooth pattern seen for shots with prepulse smoothing from preplasma

Preliminary Reflectivity Data 1 ω vs 2 ω

DEPARTMENT OF STATE UNIVERSITY

Specular FROG data shows prepulse effect No prepulse **3mJ prepulse** Time

Wavelength <

- Large red shift at the beginning: due to pushing in of preplasma
- Very reproducible

Magnetic Electron Spectrometer Measurements of Escaping Electron Distribution Functions

Typical 2₀₀ Electron Spectra 15^o

Typical 1ω Electron Spectra 15°

Measured with the same spectrometer and similar targets

T_{hot} ∼ 6 MeV

at 1 ω

Electron Spectrometer 25° off axis

T_{h} at 25° ~ 0.6 x T_{h} at 15°

Escaping Electron Spectrometer Summary 1ω vs 2ω

However, there is a large space charge effect from the escaping electrons themselves which inhibits low energy electrons from escaping

Hard X-ray Emission Versus Angle Measured with Bremsstrahlung Cannons

Hard X-ray Bremsstrahlung Cannon Spectrometers

Filtered image plate stack with Pb collimator sensitive up to 500keV

X-Ray Spectrometer Setup

Schematic of X-Ray Spectrometer setup. Image plates and filters are alternated in stacked order

Raw X-Ray Spectrometer data for first 5 channels for 1ω light

Image Plates Collimator Magnet to deflect electrons Pb + Plastic Housing

Raw X-Ray Spectrometer data for first 5 channels for 2ω light

Bremsstralung Cannon Data Fits vs Electron source Divergence

Bremsstralung Cannon Preliminary Summary

	Half Width	T _{hot}	Conversion Efficiency
Planar no pp	60°	0.37 MeV	11 %
Planar with pp	71°	0.50 MeV	17 %

Compare to 1th data for Ag target (Westover APS 2010):

- Electron Divergence ~ 60° (HW)
- Conversion Efficiency ~ 32%-38%

Compare to 1ω data for AI target (Chen PoP 16, 082705 2009):

- T_{hot} ~ 1.3 MeV
- Conversion Efficiency ~ 20-40%

Highly Oriented Pyrolitic Graphite keV X-ray Sepctrometer

Cu K_{α} HOPG Data: Buried Cones vs Planar (2 ω)

Cu K_{α} HOPG Data: 1 ω vs 2 ω - Planar

Electron Imaging Divergence Measurements

Electron Beam Divergence from Bragg Crystal Imager K_α Images

Electron Beam Divergence from Kirkpatrick-Baez 7-9 keV X-ray Imager

Preliminary Electron Beam Divergence - Planar

Preliminary Electron Beam Divergence – Buried Cones

Preliminary LPI 2D3V fully collisional kinetic PIC simulations in LSP* to gain further insight about pre-plasma effects

Pre-plasma environments chosen using the reflectivity data

* Welch et al, Phys. Plasmas 13, 063105 (2006)

Simulated motion of critical surface consistent with rising edge red shift seen in specular pulse

Target Roughness May Also Play a Role in Electron Divergence

More recent targets measured with AFM

100 μm x 100 μm

Measured Roughness is on the order of 100nm to 150nm rms over 10 μm spots

Increased simulated K_α divergence (~40%) with increased pre-plasma

Summary - Electron Energy Scaling

Experimental Results

Scaling Laws:

Wilks (Ponderomotive) PRL 69, 1383 (1992)

Beg (Exp Bremsstrahlung) Phys.Plasmas 4,447 (1997)

Haines (Energy/Momentum) PRL 102, 045008 (2009)

Summary FI Experiments

- Successful implementation of 2ω target experiments at 50J 700fs level at the TITAN facility up to 5 x 10¹⁹ W cm⁻²
- 2ω Conversion efficiencies over 60% obtained, < 10 μ J pp
- Hot electron temperature scaling inside the target looks good for 2ω FI (follows Beg (Iλ²)^{1/3} scaling)

 $T_{hot} \sim 0.37 - 0.50 \text{ MeV}$ (Bremsstrahlung)

- ~ 1.5 1.9 MeV (escaping hot electrons)
- Major Issue is large electron divergence angle
 - FW ~ 120° 142° Bremsstrahlung
 - FW ~ $36^{\circ} 54^{\circ}$ K_a imaging \rightarrow slope angle edges
- Absorption and electron yield lower than 1 ω as expected for lower I λ^2 expect to increase with I λ^2
 - η_{e-} ~ 11 17 %
 - R ~ 27 14%

Thank You