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Introduction

• For long simulation times, PIC simulations suffer from
numerical heating

• Numerical heating can be mitigated by ensuring that the 
timestep Δ� ≲ ��

��

• As �� ∝ 	

�/�, then high density plasmas require

restrictively small timesteps

• Recently Cohen et Al.1,2 has proposed a PIC-MHD hybrid
model to break this restriction

• This work aims to incorporate the PIC-MHD hybrid model 
into the parallel, relativistic, collisional code CALDER3

[1] B.J. Cohen et Al. Journal of Computational Physics, 229 (2010) pp. 4591-4612.
[2] F. Fiuza et Al. Plasma Phys. Control. Fusion, 53 (2011) 074004.
[3] E. Lefebvre et Al. Nuclear Fusion, 43 (2003) 629.



PIC-MHD hybrid

• Highly collisional1:
– Dense, Cold

– Waves are heavily damped

• Resistive MHD theory (Ohm’s law):
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• Spitzer theory for resistivity2:

� ∝
� ln Λ
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[1] K. Nanbu, Phys. Rev. E. 55 (1997) p. 4642.
[2] A. Decoster, et Al. Modeling of collisions (Gauthier-Villars, 1998)
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Nanbu and Spitzer

• Nanbu’s collision model 
has been implemented in 
CALDER1

• Spitzer’s model of 
resistivity is to be used in 
the high-density regions

• For a smooth transition, 
these two models must 
be self-consistent

[1] F. Perez, Thèse du doctorat, École Polytechnique (2010).



Ampère’s law was the cause of the stability criterion Δ� ≲ ��
��.

The new stability condition depends on how �� is determined
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Stability condition

Smoothing of 
E and B fields

Unconditionally
Unstable

Evaluated directly
from cold electrons

N/A



1D simulations

Purely PIC Hybrid
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Weak-field limit

• The Spitzer model for 
resistivity is only applicable 
in the weak-field limit

• We have lowered the laser 
intensity, and raised the 
plasma density to enforce
this

• Right is 01/0#2 of a fully PIC 
model. For the Spitzer
model to be applicable, this
needs to be small

Laser : a = 1
Plasma : n0 = 400 nc

In this region, 01 ≲ 5% of 0#2



1D simulations

Despite this, 1D simulations still exhibit a
problem in a tiny region on the boundary



Abrupt transition

• Causes?

• Fast-electron wave
excitation

• Numerical heating in 
low-density regions, but 
not present in high-

density regions

• Mis-calculation of the 
resistivity

• Abrupt transition 
between the regions

• Filtering of the electric
field

• Spatial

• Temporal (Friedman1)

[1] A. Friedman, Journal of Computational Physics 90 (1990) pp. 292-312.
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Electric fields (1D, zoomed in)
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Temperature (1D)
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Conclusion

• For numerical stability, the displacement current
34/3� must be included in the determination of the 
cold electron current

• The boundary between the two regions must be
chosen carefully to ensure that 01/0#2 remains small

• A transition zone and/or spatial filtering of the electric
field helps remove the spikes in electric field, but 
introduces artificial cooling in the electron temperature

• Larger, 2D simulations are underway to determine the 
better method of modelling the boundary between the 
two models


