Wavesin plasma

linear x nonlinear

Linear waves - small perturbations of a certain state of a system (stationary
homogeneous or slowly varying in time and/or space)

Linear expansion of quantities
a=a,+a/(r,t) b=Dh, +b/(F,t)

ao, bo may be functionsof I, tin general
2 2
The products & » & - b, b are omitted (they are small of the 2" order)

In spatially unlimited medium & = Iaﬁ exp(ikr) K Fourier expansion
The perturbations evolve independently of each other, it is sufficient to study
evolution of periodic perturbations.



We shall be often interested in eigenmodes, i.e. solutionsin the form

a= Re{a1 - exp[i (k- a)t)}}

Eigenmodes are one of the characteristics of a system. We shall search for the
dispersion relation @ = 0)(‘2)

Way of the system description

e Two-fluid hydrodynamics - simple, but in some cases incompl ete description of
the system

* VVlasov equation

Classification of waves

o Longitudinal waves x transverse waves

 High-frequency (electron) waves x low-frequency waves

* Plasma without stationary B x plasmain magnetic field (magnetized plasma)



Plasma waves (Langmuir waves)
(recommended reading — Chen 4.3, 4.4, 7.4 or Nicholson 6.3-6.8,7.3,7.4)

longitudinal waves - velocity G|l K
high-frequency (in 13 approximation M — <)
We assume small deviations from homogeneous stationary state

n,=n,+n(r,t) 0, = 0, +0, (F,t) n, = Zn
Continuity equation 5
e +div(nd,)=0
ot
N o -
0. order a—to+d|v(nouo) =0 n, = const.
on, . _ ]
1. order E+dlv[nl?)g+noulj_0 we omit NU><= 2. order
on

E‘F no diVl:il :O



Electron density variations ~ —> E=0+E(rt)

divE:i(ne—Zni) divE, =" n,
80 80
Equation of motion (momentum conservation)
aUe +(Uev)ue :i E- Vpe — Vi (Ue -4, )
ot m. mn,
oU, . Q.= Vp
—+vy, -0 =—"E, —
at e 1 rne El rneno (Vpo
: : : i(kr—at) :
Solution will be assumed in the form € (k isreal)

a(r,t)= Re( Aei(Er_a’t)) = Re( A e_i(Er_a’*t))

1 i(kr -
a=—(Ae (fr-at)
2
Capital letters— complex amplitudes

+C.C.)



Cold plasma without collisions (last term on both sides of eq. motion disappear)

a(,)—rt]l+ n,divt, =0
~ o —1wN,;+n,l kU|| =0
dvE =——n, e
€y ikEH+—N1=O
N__eg %o
t m —ia)U”+£E| =0
G,E || k M
2 2 2 N 5 .
8r211+enonlzo wie:eno Un:Q'_ EFENl
a=  gm E,M, K n, £,K
Correction when ions are taken into account
. , ,  Ze°n,
@, =0, + 0 Wy =

£oM



Reactions on high-frequency field E, (it can beinternal or external)

T — o 1€ =
Jo =€ Mol + Nl | = mer;)o E,
0 —
O¢
- P g7 9 = .
EUdiVE=p §+d'VJ =0 leg(SOE):—dIVJ
: _ i
frequency @ —l@ le[eOE+;J] =0
dive, 1+% |E—q |
WE, elgenwaves of charge
- 2 2 =
€ @ eE=0
gl’ :1— nozzl—_g _

and thus dispersion relation @ = a» independent of k = plasma oscillations



Impact of collisions

W, g__Cg M o
~ +Vg U = meEi 52 + Vg at+a)pnl—0

2 Vg
. Vq Vi
solution ~ €' @} , = _'7+\/w _Z n=nye e 2 damped oscil.

mpact of pressure (non-zero temperature)

. dw =
when T =0 Vy= a =0 put when T # O perturbations propagate
spatial shape of the perturbation is preserved, we choose K =KX = T, =u,X
u e 1 d P adiabatic process, w > v = collisions are not
It _E E - mn, or 14 ableto make the distribution function isotropic
) or,

;H

°R,

oX



Unperturbed pressure Py = N,Ks Ty (scalar, T, electron temperature)
Pressure perturbation across wavevector is caused only by density perturbation

I:)1yy = I:)122 — n_LkBTO (Tl_l_ = O)
In longitudinal direction, the work by pressure must transform into thermal energy

1 dn

Enovo deTH:_podVZ povoa dﬂ%ﬂl, dT” %T]“
du
2P 2k T
= kBT]H = n—gonl = nlz N, P = nLkBTo + nOkBT]“ =3k, TN,
In longitudinal direction, electrons are particles with 1 degree of freedom (y=3)
2 kT 92 2
dy--fg Ton 0N Kl dh e, _j,
ot m, mn, ox ot m ox° gm
Plasma wave propagates W = a)i +3k*V7, (Vie =kgT,/ me)



w WL % Dispersion relation @® = ? + 3k®vs,

A e
_w_ 2 p
v, —?—\/3VTe+?
do  3kvi
Yo Tk \/a)z + 3k3v2
p Te
k j—
//A-?& ’ V(p
2 2, ,2
| 2 dispersion £ (@ R’)zl_“’p_3k Ve
System with temporal and spatial dispersion <r 1 e e



Description via Vlasov equation

of oy _of, - of, 0 -
ot o ap solution fo(P), E; =0
e e My g I
Perturbations f1(F: P), B k =Xk AN X Ix Ela_px_
Solution in the form exp(ikx-1 ax)
_. eE of, perturbation need not be small for Vx =V, = @/K
1~ w—kv, op, = resonance electrons
= e e . . eE of, ..
d - ~n=——|1d kE, = — 2 dp
VE eonl gojlp & —[Ia) kv, ap,
. e of 2
ike, | 1+ OdrojEle @ a(p,)
[ gokj“’ikvx L T j(1_ v "
E, Q)

where 9(P,) =" [ fo(P)dp,dp,
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w
V =—>V : :
When ¢ | Te we use Taylor expansion, resonance electrons are omitted

(for vy > c there are no resonance electrons at all)

W, 2kv,  3k2v2
£, =1- 22 [g(p)(1+ 2%+ 38 ap, s (1) =u. =0

2 2
@, 3kavz @
Then & =1- (02 ~ sze (02 = W’ = ws T 3k2V$e

Whenvy,<c  ?what to do with polein integral —answer must be searched via
solving initial value problem, i.e. perturbation is given in the initial time to and we
follow its evolution

For solving initial value problem, Laplace transform must be applied

A(w) = T a(t) €“dt

L aplace transform is defined by integral for o with enough

large positive imaginary part (for a(t) limited, it isfor Im(w) > 0)

For other m, Laplace transform is obtained by analytic continuation of function
PV 11



2
0 1 d
E = 1+ m D I J dpx
K *w-kv, dp,
For Im(w) > O integration path runs below the pole, when doing analytic
continuation the path has to stay always below pole (go around pole from below !)

£.- M-S &ﬁ

- x | P4/
_ % o

[

One knows from residue theorem that integral over half-circle is ixmxresidue
For w/k << citis

L . m_ 1 . m P My (p_wj
w—kv, k maw k mw k ok
pX_ k pX_ k

Here P denotes integral in the sense of Cauchy principal value
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2
Ime (w,k) = -7 @’ " dg

F edl it P K2
or wreal Itis k dpx px:M
4
e ]

- | >
na’ yz
;é' X

|m(8r) >0 |m(8r) <0

One searches complex w = wxr+1 @ so that e(w,k) =0
Weakly damped (slowly growing) waves |m| << ar
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dRee, (@,) _

E(oy+1w)=Ree (w,)+1ImE () +1w, 0
wR
2
@, 3k2y2
- 1__ b Te _
For ar/k>> vre  itis Re‘C/‘r (a)R)—l a)é a)é =0
2 2 2\ ,2
and thus W = a)p +3K Ve
Imaginary part of frequency is
Imé& (@ ‘o, d
o =— r( R) :ﬂ.a)irnezR g
dReé& (wy) 2k® dp, | . _memk
X Py= <
dwy
The evolution is exp(-i wrt)exp(at) - the rate of Landau damping isyL=-w

2 2 2
w :_\/; i exp| ——2&
For Maxwell’s distribution itis 8 k33, 2 k?v2,
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Enerqgy of plasma wave

_goa_E:T = E50 OB =—jE E:E(Ee‘i“’R%E* d®)
E is complex amplitude, R denotes real part, we average over ti me< >2_”
dl
4 dt 2 do |,
. d~p2 1d|m0' d~p2 1 5 _ )
S 9 E[ =-ZReo(w)|g] dE _ -
4dt!' 4 do . dt 2 used (¢t |
R
o

Conductivity orelated to permittivity & & =1+— we, — let e, =Re(g,)
2 1 , general expression

‘ E‘ S Reo(wy) q
& T (plasmawave g (Pefr) = 26)
W . =energy density

E
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Linear X Non-linear L andau damping
In coordinate system connected to the wave Is wr=0

A —£ ~ =
V E =Esnkx g Upz—ego:—%coskx

and electron eguation of motionis
m X = —eE sinkx
electron oscillates in potential well with frequency
eEk) "
@ = [E] (bounce frequency)
for times t < @," motion is not influenced by field = Landau damping is linear
for n.=-o >a, intime t=7/a®, electrons start to return energy to wave

nlEl trapped electrons 4 ) A
| V, =V, <V<V, +V,

\__,.A rnevt2/2: 2|e(pm|

L . i & V2 _
=4 3 2A V, = 2(—}
“ u v mk



BGK modes (Bernstein, Green, Kruskal)
It follows from inhomogeneous equilibrium — accurate non-linear solution

Stationary Vlasov equation for particle s has solution
2
v, Liqed —o f=f| 2 tap(x) |=fU)
X op 2m,

Simplest solution for cold untrapped beams

OOV, (X) =nyv, NEVI(X)= %Vio V,(X) = V2, + 28p(X) / m,

Continuity equation for e,i and particle motion in potential field (vi similarly)
Charge densities of particle are inserted into Poisson equation

~1/2 ~1/2
d?p en( v, Vv, | en 2ep 2Zep
> = — = 1+ > - 1- >
dx* & \v() i) & | mv Mivia

Equation issimilar to that for motion in potential field — potential V(¢)

1/2 1/2
d?p 0 N 260 MVe [ 2Zep
— __V((p) where V(p) = {meve0 1+ + Z 1 MiViZO

d X2 a (0 80 rnevio
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2
I\/Ii ViO

For small ¢ ‘G(D(X)‘« mevgo A ‘G(D(X)‘<<

2 2 .
d §0+noe 1 n Z 9=0 O(X) = @y SiN(X/ Aggy )
dx’ €y rnevgo M iVi20 solution Aoox = wﬁe / Vio"'a)ii A%

/afm.; periodic potential
electrons see it reversely
oo

For any potential, it is possible to construct such stationary distribution of ions and
electronsthat it creates this given potential

Case-van Kampen modes

One searches for f1 for given @, k T, = fiexp(ikx—iat) contain & function —
non-physical
There exist combinations CvK modes that do not contain singularities
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High-frequency eectrostatic waves in plasma with stationary magnetic
field Bo

k|| B, magnetic field does not influence waves = plasmawaves

k LB, additional ly to electrostatic forces, electrons are returned back by
magnetic field — cyclotron frequency o

when T=0 o = a)§ +a; =, upper hybrid frequency

upper hybrid waves— plasmawaves in direction normal to B,

In warm plasmathey propagate due to thermokinetic pressure (similarly as
plasma waves)

additionally there exist linear eigenmodes of Vlasov equation that do not
have hydrodynamic equivalent — Ber nstein modes
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Stream instabilities (Two-stream instability)

Many situations — motion electrons against ions, motion of electron groups

€ e Simplest situation (mainly for analytic
A == >E solution) — 2 identical electron groups
— 4, + ¥ against each other —ions static ui=0
. NAo= NBo= No/2, Zni = nNo
‘-6 © '4’ & = VTe << Vo Eo=0
Jn, + d (naua):o au‘)‘—I—(UOKVU(){)z—E divE:—E(nA+nB—no)
ot oXx ot m, £,
We solve evolution of linear perturbation ny1, Ugt, E1 ~ exp(ikx-i at)
—iwn,, +ik(nu, /2-vyn,,)=0 —iwng, +ik(nyug, / 2+ v ng, ) =0
. . e . . eE, . e
—|a)uA1—|kvouA1=—E|%l —|a)u31+|kvou81:—FEe1 |kE1:—8—0(nA1+nBl)

Amplitudes of velocities are expressed from equations of motion and we
substitute them into continuity equations
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n, . eE, LN €&, .
(I)me(w+kv)2 Mgy = K= ')me(w_kvo)z and insert them to

Ny =

1 1
_|_

Zgome[(m kVO)Z (w_kVO)Z]El and from here

IKE, =1K

Poisson equation

2

_% 1 1
we obtain dispersion relation 1= 2 [(0)+kVo)2+(w—kVo)2j leading to

4 2..,2 2 2 2..,2 2..,2 2
o' — (2K’ + @) 0® +k vO(k O—a)p)zo character of the

solution depends on the sign of absolute term, if itis> 0, @ >0, @; >0

2\ ,2 2
then system is stable, if KVo <@, then @ >0, @ <0 and root with
positive imaginary frequency exists — solution grows in time — instability

k2v2+22 1+ 1+8k2 Vo 2 2
W, = > prokV <w; je @, =1ti\-@;

and solution @ =i\-@; isgrowing exp(-i wst) = exp (1)
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for k*vg <<a) itis @ =iy=ilk|v,  search for fastest growing mode (K),—

| | dw,) _ k?v? =
N maximum d(k?v?) =
thus fastest growing mode grows only a bit

slower than ay
How the growing modes ook like?

Pro small k for growing mode @=1k| Vv,
density perturbations of A,B nearly cancel
(upper figure —vo=2) Field E1 isformed only
by small sum of densities of order ~k?vo?/op?
growing field exp(ikx+kvot)

Fastest growing mode (lower figure)
One sees nonzero sum of density
perturbations of beams A ,B

Here special case of growing static
perturbation (due to problem symmetry)

Mé

—E1
nA1 ||
—nB1

—E1
nAl ||
=—=nB1




Other case — electron motion against ions with velocity vo

We introduce x= af oy a y=kvo/ ax
_m/M, 1
Dispersion relation o (x—y)’

for y> boundary, the dispersion relation has 4 real roots — stable system
for y < boundary, the dlspers on rel atlon has onIy 2 real roots— Instability

10" |

10° |

10"

-0.5 o a.5 1 1.5 2 2.5

M, m |
stability boundary ¥ (”i/; [“i/M:JNl (thus kvo=cx)

1/3
_ m,
maximal growth Vmax = @p (Wj

PV 23



