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Summary. The Cartesian arbitrary Lagrangian-Eulerian (ALE) method is gener-
alized to cylindrical coordinates and implemented on logically rectangular quadri-
lateral mesh. For laser plasma applications the code is extended to model also laser
absorption and heat conductivity. The code is used for simulation of high velocity
impact problem for which pure Lagrangian method fails due to severe mesh distor-
tion.

1 Introduction

For solving of compressible fluid equations, one can use two different ap-
proaches – the Eulerian and Lagrangian methods. In the Eulerian approach,
the fluid flows through a static computational mesh, in the Lagrangian ap-
proach, the computational mesh moves with the fluid, there is no mass flux
between computational cells. The advantage of the Lagrangian approach is
obvious – it can simulate situations when the investigated fluid considerably
changes its volume (like compression or expansion) or its shape and when
moving boundary conditions are treated naturally. This is exactly the situ-
ation in laser-plasma simulations, where the computational domain dramat-
ically changes during target compression or corona expansion, and thus the
Lagrangian approach is convenient. Unfortunately, the moving computational
mesh can degenerate or even tangle during the simulation, it can lose its reg-
ularity, and the Lagrangian computation cannot continue as its assumptions
on the mesh quality do not remain valid.

The Arbitrary Lagrangian-Eulerian (ALE) [1] method combines positives
of both approaches to treat this problem. The computational mesh moves as in
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the Lagrangian approach, so one can treat changing computational domains.
When mesh quality decreases, the Eulerian part of the ALE method comes
into play – the mesh is rezoned (smoothed), and the conservative quantities
are conservatively remapped to a new, smoothed mesh. Then, the Lagrangian
step can continue till the next mesh smoothing step.

In [2], we presented the ALE method in Cartesian geometry, working on
quadrilateral 2D computational meshes. Here we extend this ALE method to
the cylindrical r−z geometry needed for modeling of laser plasma interactions.
The laser plasma is modeled by the Lagrangian hydrodynamical equations

d ρ

d t
+ ρ div u = 0, ρ

d u

d t
+ grad p = 0

ρ
d ǫ

d t
+ p div u = −div(I) + div(κ grad T ) (1)

where ρ is density, u velocity, p pressure, ǫ specific internal energy, T tem-
perature, κ heat conductivity and I vector of laser intensity. The total La-
grangian time derivatives in this system include convective terms d/d t =
∂/∂ t + u · grad. The movement of each node of the Lagrangian mesh is de-
fined by an ordinary differential equation d x(t)/d t = u. The system is closed
by the equation of state defining relations p = p(ǫ, ρ), T = T (ǫ, ρ) between
thermodynamical quantities ǫ, ρ, p, T . This system is numerically treated by
splitting it into hyperbolic and parabolic (heat conductivity) parts.

2 Lagrangian Step

Lagrangian hyperbolic hydrodynamical equations are numerically treated by a
compatible staggered method [3] which defines the scalar quantities (ρ, p, ǫ, T )
inside grid cells, and the vector quantities (x,u) in grid nodes. There are
two versions of the compatible method in the cylindrical r − z geometry [3]:
Area Weighted (AW) and Control Volume (CV) methods. The AW method
cannot be used in the ALE framework as it does not define well the cylindrical
volumes needed during remapping and without these volumes we are not able
to construct an AW compatible remapping.

The CV method defines the quadrilateral cell volume (based on Green’s
theorem)

Vc =

∫

c

1 r dr dz =
1

6

4
∑

l=1

(zl+1 − zl)
(

r2
l + r2

l+1 + rl rl+1

)

(2)

where (rl, zl), l = 1, · · · , 4 (with cyclic extension) are the coordinates of four
nodes defining the cell c. However, the cylindrical CV method has to be modi-
fied to be compatible with ALE remapping. Originally the CV method defines
cell center as the average of the cell nodes. The average is replaced by the mass
center of the cell
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rc =
1

Vc

∫

c

r2 dr dz, zc =
1

Vc

∫

c

z r dr dz

so that the remapping can be conservative. The compatible method is based on
the zonal, subzonal, and viscosity forces in each grid node. The cell integrals
appearing in the zonal and subzonal forces in cylindrical geometry contain
additional factor r compared to the Cartesian geometry case. Using Green’s
theorem the cell integrals are transformed into the integrals over the cell edges
which are evaluated exactly (see below).

3 Rezoning and Remapping

The rezoning stage of the ALE method performs mesh smoothing. Most of-
ten we employ the simple Winslow smoothing technique [4] for rezoning, like
in Cartesian geometry, even though more advanced methods as the reference
Jacobian approach exist. Special boundary conditions in cylindrical geome-
try are applied during rezoning on the z axis so that the boundary nodes
movement is constrained to this axis.

The remapping stage of the ALE method includes a conservative interpo-
lation of the discrete conserved quantities from an old mesh to a new smoother
one. The remapping stage consists of three steps: reconstruction, integration
and repair. First the remapped conservative function g (as e.g. density ρ) is
reconstructed from the discrete values by a piecewise linear function on each
old cell, typically with the Barth-Jespersen limiter. Then the reconstructed
piecewise linear function is integrated over each new cell c̃ (objects related to
the new mesh are accented by a tilde) to get the total value Gc̃ =

∫

c̃ g rdr dz
of the conserved quantity (e.g. mass of the cell) inside the new cell, which
defines the remapped density of conserved quantity g̃c̃ = Gc̃/Vc̃.

The natural exact integration of the piecewise linear function over the
new cell requires computing intersections of the new cell with all neighboring
old cells, see Fig. 1(a) where the new cell c̃i,j = P̃i,j , P̃i+1,j , P̃i+1,j+1, P̃i,j+1

intersects with nine (3×3 patch) old cells ck,l, k = i−1, i, i+1, l = j−1, j, j+1.
The linear reconstruction, given by the old cell c′

g(r, z) = gc′ +

(

∂g

∂r

)

c′
(r − rc′) +

(

∂g

∂z

)

c′
(z − zc′),

inside each such intersection I c̃
c′ results in the contribution

GI c̃

c
′

= gc′

∫
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c
′

r dr dz +
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to the whole integral Gc̃. The integrals in this contribution over the polyg-
onal intersection are transformed using Green’s theorem into integrals over
the edges of the polygon. The exact integration is computationally rather
expensive because it requires finding all cell intersections.
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Fig. 1. Old (dashed) and new (solid segments) mesh with intersection regions for
the exact integration (a) and swept regions for the approximate integration (b).

The approximate integration over swept regions (see [5] for Cartesian ge-
ometry case), which are the regions swept by the cell edges moving from old
mesh to the new position in the new mesh (see Fig. 1(b)), is much faster.
The contribution from each of the four swept regions has similar form as (3)
with the intersection I c̃

c′ replaced by the swept region. Green’s theorem again
transforms integrals over polygons into integrals over the edges of the polygon.
In all the cases the integration from the Lagrangian step and from the remap-
ping, the integrals of low degree polynomials in r, z over the given polygon P
can be exactly evaluated as e.g. (2) or

∫

P

r2 dr dz =
1

12

∑

e∈∂P

(z2 − z1)
(

r2
1 + r2

2

)

(r1 + r2)

∫

P

z r dr dz =
1

24

∑

e∈∂P

(z2 − z1)
(

r2
1 (3 z1 + z2) + r2

2 (3 z2 + z1)

+2 r1 r2 (z1 + z2)) ,

where the edge e connects the polygon P vertexes (r1, z1) and (r2, z2). In
the swept regions method the integrals of the reconstructed function over the
swept regions can be interpreted as fluxes through the mesh edges and the
remapping formula can be written in a conservative flux form.

The last step of the remapping phase is repair [6] which conservatively
redistributes conserved quantities in such a way that the remapping does not
introduce any new local extrema.
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4 Laser Absorption and Heat Conductivity

For laser plasma simulations, several more issues have to be included to get
realistic results. The first is the model of laser absorption which appears as a
source term div(I) in the energy equation (1). We assume that the absorption
appears only on a critical surface which is the isosurface with a critical density.
The laser penetrates through the subcritical density where its intensity is
given by laser radial and temporal profiles. Behind the critical surface the
laser intensity is zero. The laser intensity is projected on the edge normals at
the edge midpoints and div(I) approximated by the standard formula (derived
from Green’s theorem) is included as a source in the hyperbolic part of the
energy equation (1) in Lagrangian step.

The simulation of laser absorption is considerably influenced by plasma
heat conductivity which is included as a parabolic term in the energy equation
(1). The parabolic part of the energy equation is treated separately by splitting
by an implicit mimetic finite difference method [7] generalized to cylindrical
geometry. The mimetic method works well on poor quality meshes appearing
quite often in the Lagrangian simulations and it can resolve the heat waves
caused by non-linear heat conductivity κ(T ), which is typically proportional
to T 5/2 for plasma.

5 Simulations of flyer targets

To show the ability of our cylindrical code to perform complex modeling of
the laser-plasma interactions, we simulated a set of problems based on the
real experiments [8] performed at the PALS laser facility in Prague. Here we
shortly present one of these simulations. A thin Aluminum disc is irradiated
by an intense laser beam and ablatively accelerated up to a very high speed.
The disc flyer impacts the massive Aluminum target creating a crater. The
experimental setup is shown in Fig. 2(a). The Aluminum disc flyer has radius
r = 150 µm and thickness d = 11 µm and is originally placed at distance
L = 200 µm from the massive Aluminum target. The laser operates at 3-rd
harmonics with a total energy 240 J, the laser pulse length is 400 ps and radius
of focus (laser spot on target) is rf = 125 µm.

We split the simulation into two parts. In the first part the disc flyer is
ablatively accelerated by the laser beam and in the second part the impact of
the disc flyer into the massive target is modeled. The laser absorption heats
the upper disc surface which evaporates and expands upwards very rapidly,
accelerating the disc downwards due to momentum conservation. The first
part of the simulation is stopped at time t = 1.3 ns when the disc reaches the
massive target as shown in Fig. 2(b) and zoomed at Fig. 3(a). The average
velocity of the disc flyer impacting the target is 134 km/s. Note in Fig. 2(b)
that the size of the computing domain has expanded from d = 11 µm to
2000 µm in z direction and from r = 150 µm to more than 1500 µm in r
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Fig. 2. Experimental setup (a); mesh and density colormap of the accelerated disc
flyer hitting the massive target (b) where the horizontal line at z = 0 marks the
upper surface of the target.

direction showing the need to use the Lagrangian moving mesh formulation.
Similar expansion rate appears also during the second part of simulation, the
huge area of reflected material moving upwards is cut off in Fig. 4 in order to
be able to distinguish the features of the crater.

The initial conditions for the impact simulation, shown in Fig. 3(b), are
obtained by a conservative interpolation from the results of the ablative disc
acceleration, shown in Fig. 3(a), to the initial mesh constructed for impact
simulation. The impact simulation by pure Lagrangian method fails soon after
time 0.5 ns due to a seriously distorted computational mesh, shown in Fig.
3(c), while the ALE method keeps the mesh reasonably smooth as seen in
Fig. 3(d). The impact simulation is possible only by the ALE method. After
the impact the large kinetic energy of the disc flyer is transformed into an
internal energy which melts and evaporates the target material. The circular
shock wave visible in the solid phase region in Fig. 4 propagates into the mas-
sive target. The computational mesh and temperature colormap is presented
in Fig. 4 at time t = 80 ns. The temperature colormap is separated by two
temperature isolines, corresponding to Aluminum melting and evaporating
temperature, into three regions (from bottom to top on z axis) of solid, liquid
and gas phases. The crater is formed by the impact in the target. We inter-
pret the crater boundary by the gas - liquid interface. After time t = 80 ns
this interface does not move any further into the target, so that the upper
temperature isoline in Fig. 4 presents the final shape of the simulated crater.
The simulated crater formations are reasonably similar to the experimental
data. More physics related details can be found in [9, 10].
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Fig. 3. Density colormaps of: the accelerated disc flyer hitting the massive target
(a) (zoomed Fig. 2(b)); the initial conditions and the mesh for the impact simulation
(b); impact simulation at t = 0.5 ns by pure Lagrangian (c) and ALE method (d).

6 Conclusion

All parts of the ALE method have been generalized from Cartesian to cylin-
drical geometry and implemented into the 2D laser plasma simulation code
including also heat conductivity and laser absorption. The code has been
applied to the simulations of the disc flyer targets originated from PALS ex-
periments. The pure Lagrangian method without ALE extension is unable to
simulate such high velocity impact problems due to severe mesh distortion
appearing very soon after the impact, while ALE gives results which compare
reasonably well with the experimental data.
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Fig. 4. Computational mesh (only every second edge in each logical direction is
visible) and temperature (in eV) colormap at time t = 80ns after the impact. Solid,
liquid and gas phases (ordered on the z axis at R = 0 from bottom to top) are
separated by isolines at temperature of melting and evaporation of Aluminum.
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5. M. Kuchař́ık, M. Shashkov, and B. Wendroff. An efficient linearity-and-bound-
preserving remapping method. J. Comp. Phys., 188(2):462–471, 2003.

6. Mikhail Shashkov and Burton Wendroff. The repair paradigm and application
to conservation laws. J. Comp. Phys., 198(1):265–277, 2004.

7. M. Shashkov and S. Steinberg. Solving diffusion equation with rough coefficients
in rough grids. J. Comp. Phys., 129:383–405, 1996.

8. S. Yu. Guskov and et.al. Investigation of shock wave loading and crater creation
by means of single and double targets in PALS-laser experiment. J. of Russian

Laser Research, 26:228–244, 2005.
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