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We describe here our newly developed ALE code on 2D quadrilaterals. The code is
employed here in the numerical simulations of the crater formation during impact of small
accelerated object on bulk target. The simulation of the high-velocity impact problem
by the Lagrangian hydrodynamical codes leads in later stages to severe distortion of the
Lagrangian grid which prevents continuation of computation. Such situations can however
be treated by the Arbitrary Lagrangian-Eulerian (ALE) method. In order to maintain the
grid quality, the ALE method applies grid smoothing regularly after several time steps
of Lagrangian computation. After changing the grid, the conservative quantities have to
be conservatively remapped from the old grid to the new, better one. After remapping,
Lagrangian computation can continue.
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1 Introduction

In the nature many phenomena are understood as conservation laws. Fluid
dynamics and plasma physics problems are modeled by a set of hydrodynamical
conservation laws for mass, total energy, and momentum in each direction. Math-
ematically, these conservation laws are expressed by a set of hyperbolic partial
differential equations. Generally, solving these equations must be done numerically.

One can use two different approaches for solving hydrodynamical equations, Eu-
lerian and Lagrangian methods. In the case of Eulerian method, the computational
grid is static, and the fluid flows through it. In Lagrangian methods the computa-
tional grid is moving with the fluid, it can resolve the solution on the regions of big
changes of fluid volume and shape. Unfortunately, it may happen that the moving
grid becomes tangled and loses its regularity. Now the mathematical assumption is
violated and the Lagrangian method can not continue the computation.

Arbitrary Lagrangian-Eulerian (ALE) method [1] is a way, how to deal with
this problem. After several time steps, we smooth the computational grid by rezon-
ing and recompute conservative variables to the new, better grid. This algorithm
adds additional diffusion to the numerical solution, the computational grid remains
reasonable, and the Lagrangian numerical computation can continue.

In this paper we present the description of the 2D ALE code on logically or-
thogonal grids, and its application on the high-velocity impact problem. Previously,
crater formation during interactions of intense pulses of laser PALS with targets
has been simulated by high-velocity impact problem [2]. Intense laser beam can be
also used for ablative acceleration of a macroparticle against solid targets. Here, we
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simulate the impact of an accelerated solid Aluminum disc onto a massive target by
our hydrodynamical ALE code. The simulations parameters used here are nearly
similar to the conditions in the experiment on PALS laser [3].

The hydrodynamical equations describing the conservation of the mass, total
energy, and momenta in both directions, can be written in the form

1

ρ

d ρ

d t
= −∇ · ~v, ρ

d e

d t
= −p∇ · ~v, ρ

d~v

d t
= −∇ · p, (1)

where t is time, ρ mass density, ~v vector of speeds, p pressure, and e the specific
internal energy. To close this system, we must add the equation of state (EOS),
which relates the density, internal energy, and pressure for the particular fluid. The
simplest possibility of the EOS is the equation of state of the ideal gas. It can easily
be written as p = (γ − 1) ǫ ρ, where ǫ is the density of the internal energy e = ρ ǫ.
This form of the equation of state can be used for many testing computations as
its evaluation is very fast, but its usage for plasma simulations is limited as plasma
differs a lot from the ideal gas. To approximate real plasma behavior, we employ the
quotidian equation of state (QEOS) [4], which is valid in a broad range of plasma
conditions. It calculates the thermodynamic properties for the given conditions by
applying Thomas-Fermi theory for electrons, and Cowan model for ions.

2 ALE Code

Our 2D Cartesian geometry ALE code on logically orthogonal quadrilateral
grids was tested on a wide variety of problems from fluid dynamics, as Noh problem,
Sedov problem, Rayleigh-Taylor instability. All numerical results are reasonable.

The Lagrangian part of the ALE code is based on the zonal, subzonal, and
viscosity forces [5, 6] computed in each grid node, which define new nodal speeds
in the next time step. The zonal part of the force depends on the cell geometry,
and on the pressure inside the cell. It represents the force from the grid cell to
each its node due to the pressure inside. The subzonal pressure force depends on
the difference between the pressure in the cell, and the pressure in the cell corner
(quarter of the cell adjacent to a particular node). It reduces the artificial grid
distortions, prevents hourglass grid motion [6], and its value is controlled by one
of the input parameters, the merit factor. Thus, we can regulate vorticity of the
solution. The last part of the nodal force, the viscosity force, adds artificial viscosity
to the solution. Without this component there is not enough dissipation and the
solution fails soon. We use a bulk viscosity force based on classical Kuropatenko
formula for the viscosity pressure correction.

Smoothing the Lagrangian grid is called rezoning and it has to be followed by
remapping of conservative quantities from the old grid to the new, smoothed one.
For rezoning, many different techniques can be used. One possibility is the combi-
nation of the feasible set and the global optimization techniques described in [7].
This method is very powerful for tangled or very distorted grids, but it is also very
time consuming. When doing regular rezoning-remapping during the computation,
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Fig. 1. Set-up of the problem, parameters L = 300 µm, d = 11 µm, and r = 150 µm.

a more efficient method is suitable. The grid is not distorted so strongly, and an
easier method can be used. One of the most common methods is based on Winslow’s
work [8] which is discussed in details in paper [9].

For remapping, method based on the exact integration is the most natural one.
Unfortunately, due to old and new cells intersections computation this method is
very slow. A new method based on approximate integration was developed [10].
In the first stage, the conservative quantity is piecewise-linearly reconstructed on
the original grid. We use Barth-Jasperson limiter for slopes computation to ensure
local monotonicity of the reconstructed function. In the second stage, approximate
integration over swept regions is used. By swept region, we mean the movement of
the edge of the original grid to its new position. This method does not require inter-
sections computation, but it may create new local extrema. Thus, the third stage
is necessary - the repair. Local mass redistribution enforces local bound preserva-
tion and keeps the conservativity. This complete remapping algorithm is than local
bound and linearity preserving, conservative, and much more efficient than the ex-
act integration. This remapping method is used not only for mass recomputation,
but also for the other conservative variables - energy and momenta. As conserved
quantities are not mutually independent, a special procedure must be applied for
remapping all conservative quantities.

3 Numerical results

Problem solved by our 2D ALE code simulates a part of the experiment per-
formed on the PALS laser facility [3]. In this experiment, Aluminum disc is acceler-
ated by ablation pressure induced by intense laser pulse against thick massive solid
target. A scheme of the experimental set-up is presented in Fig. 1.

The density of the flying disc is estimated from 1D Lagrangian simulation of the
disc ablatively accelerated by laser pulse to about a half of solid state Aluminum
density. Our simulation starts in the moment of the disc impact onto the solid
target. We chose the impact speed 54 km/s, that is near to the value measured in
paper [3] for the 250 J laser beam. The disc starts to sink into the massive target.

Pure Lagrangian computation fails very soon due to the computational grid
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Fig. 2. Density colormap at critical part of the computational grid. (a) shows the initial
grid before computation. After very short 0.5 ns computation with the pure Lagrangian
method, the grid is very distorted (b) and includes non-convex cells. On the other hand,

the grid during the complete ALE method (c) is still very nice.

distortions and the complete ALE algorithm with its rezoning-remapping stage is
required. One can see the example on the Fig. 2. The right blue part (with density

1.35g/cm
2
) of the initial grid with lower density represents the disk moving very

fast (54 km/s) to the left. In a very early moment of the computation (0.5 ns),
the material just started to compress, which is visible also from the grid. The
pure Lagrangian computation leads to a very distorted grid in the critical area of
the disc edge, and after several next steps the computation fails. The complete
ALE algorithm continues computing and resolves the problems with the distorted
Lagrangian grid very nicely.

After the impact, both the massive target and the disc start to raise their
temperature. A shock wave is formed that propagates into the target and causes
heating, melting and evaporation of the target material. QEOS equation of state is
used here for Aluminum. This equation of state is fairly universal and can model
matter from solid up to the plasma state. However, it does not include phase transi-
tions explicitly, and thus material melting and evaporation cannot be satisfactorily
determined from the target temperature. We use here internal energy of the shocked
material instead. The crater boundary is found from condition that energy deliv-
ered by the shock wave must be at least equal to the sum of energy needed for
heating material up to boiling point, and of latent heat of vaporization.

The increase of the internal energy measured in erg/g is plotted in Fig. 3 in
time 30 ns after disk impact which is the final moment of crater formation. Dif-
ferent colormaps are used for the different states of the matter - evaporated gas in
shades of pink on the right, solid metal in shades of gray on the left and melted
liquid in colors in between. The different phase states are separated by the isolines
at 9.72 · 109 erg/g and 1.35 · 1011 erg/g levels of internal energy, which are energies
needed to heat and melt and heat, melt and evaporate of Aluminum. By the crater
we understand the interface between the liquid and gas phase. In fact, some amount
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Fig. 3. Increase of internal energy in erg/g in time 30 ns after disk impact. Different
energy colormaps for solid material, melted Aluminum, and evaporated gas. Two sick

isolines divide three phase states.
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Fig. 4. Density colormap in g/cm2 in time 30 ns after disk impact with computational
grid and two internal energy isolines dividing three phase states.

of the liquid material probably flows also away, as the experimental crater depth is
actually somewhat greater, about 300 µm. The discrepancy may be also caused by
the difference in geometry used in simulations (Cartesian) and experiment (cylin-
drical). The shape of crater cross-section is close to circular, which corresponds
well to the experimental results. Density is presented in Fig. 4 together with ac-
tual computational mesh and internal energy isolines dividing three phase states
of Aluminium. At later times the liquid-gas interface does not move further inside
the solid target, while the solid-liquid interface continues to move inside together
with the circular shock wave.
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Milan Kuchař́ık: ALE Simulations of High-Velocity Impact Problem

4 Conclusion

We have developed a 2D ALE code on logically rectangular grids, which is
robust enough to be applicable to complex simulations from plasma physics. As an
example of the code application, we have presented here simulation of an impact of
the thin metallic disc onto a massive target for parameters similar to experiment
[3]. Our code derived the shape and volume of the resulting crater that may be
compared with the experimental data.
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